

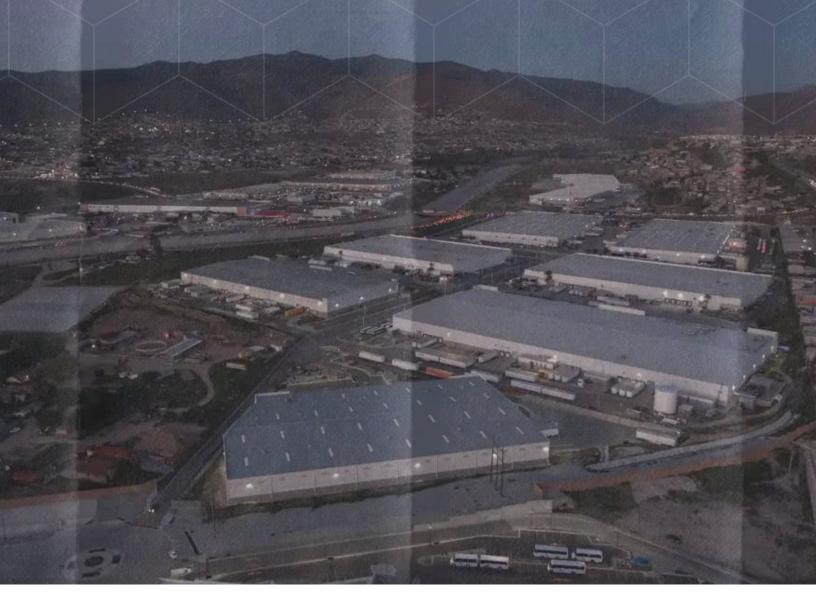
<u>S</u>	CRÉDITOS	01	
	Edición, diseño y contenido	02	INTRODUCCIÓN
Z	CONTEXTO	03	ACERCA DE NEZCO®
Ш	OBJETIVO	04 05	ACERCA DE NEZCO®
	¿ESTAMOS CONECTADOS AL	06	GENERALIDADES DE B.C.og Importancia de la energía en B.C.11 Particularidades de la energía en B.C.
	RESTO DEL PAÍS? Sistema Interconectado Nacional 13	12 15	CAPACIDAD INSTALADA ACTUAL Y FUENTES DE GENERACIÓN EN B.C.
			18 Proyecciones del contexto de energía en B.C.18 Proyectos industriales, subestaciones 2025
Height	HAY ENERGÍA EN BAJA; CALIFORNIA?	20	ALTERNATIVAS PARA
	ASPECTOS FAVORABLES Y	2326	ACCEDER A ENERGÍA PRIVADA
	OPORTUNIDADES PARA B.C.	28	CONSIDERACIONES AL CONTRATAR UN GESTOR EN
	FUENTES Y REFERENCIAS BIBLIOGRÁFICAS	30	ENERGÍA

Créditos

Información trabajada y elaborada por Nezco®, específicamente para uso informativo y que dicho objetivo es guiar al usuario a un mejor uso de la información en el entorno energético.

El presente documento fue elaborado con la colaboración del siguiente equipo:

- Redacción, edición, recopilación de información y fotografías de La Baja: Lic. Alfredo Ángeles
- Diseño y presentación visual: Mtra. Ana Karen Garduño
- Revisión técnica y validación de contenido: Ing, Ángel Nevares, Ing. Alexis Nevares, Ing. Alberto Valenzuela, Jorge Nevarez, Lic. Francisco Nevarez.



Introducción

A lo largo de los años, Nezco® ha fortalecido su liderazgo en el sector eléctrico. Gracias a la experiencia directa en la industria y la estrecha colaboración y relación con la Comisión Federal de Electricidad (CFE), comprenden cuáles son las piezas clave y los pasos esenciales para el desarrollo energético en la región y el país.

Partiendo de este conocimiento, se decidió crear una guía que presentará, de forma clara y realista, el panorama energético de Baja California.

Para ello, se trabajó en la recopilación de información relevante de la región, organizándola en secciones. Así mismo, se buscó difundir los esfuerzos que se han venido dando en el sector público y privado, en conjunto, o separados, para impulsar un crecimiento económico, social y sustentable del estado de Baja California, con la energía eléctrica como pilar fundamental.

Contexto

Desde los años 80's, Baja California ha experimentado un crecimiento industrial constante, desde la llegada de empresas de manufactura extranjeras hasta el desarrollo urbano y económico en general.

Este escenario ha implicado un incremento sostenido en la demanda de energía eléctrica, lo cual representa un desafío que, si bien se observa en todo el país, adquiere especial relevancia en el estado debido a su ubicación geográfica y su estrecha relación con el vecino país, detonado su rápido crecimiento.

NEZCO® es una constructora eléctrica que reúne más de 40 años de experiencia, especializada en ofrecer soluciones integrales en energía para los sectores industrial, comercial y residencial.

Remonta su historia a principios de los años 80's como un negocio familiar, ha evolucionado hasta consolidarse como una empresa formal, sólida y profesional, reconocida por su compromiso con la calidad, seguridad y eficiencia.

Su experiencia abarca desde el diseño y gestión hasta la ejecución de instalaciones eléctricas en media y alta tensión. Entre sus servicios destacan estudios eléctricos, cumplimiento del Código de Red, desarrollo de ingenierías, así como la construcción de subestaciones, líneas de transmisión e infraestructura eléctrica

¿QUÉ ES NEZCO?

Servicios eléctricos a cargo de un equipo comprometido.

Además, **NEZCO®** provee una gama completa de servicios complementarios que la industria demanda en materia de construcción y energía, siempre con un enfoque en soluciones integrales que aporten valor real a cada proyecto.

El equipo está conformado por un conjunto de ingenieros certificados, técnicos especializados y personal operativo altamente capacitado, preparados para enfrentar cualquier desafío bajo los más altos estándares de seguridad.

En cada obra, **NEZCO**® se compromete a hacer las cosas bien desde el inicio, promoviendo el desarrollo profesional de su equipo y contribuyendo activamente al crecimiento de la región a través de proyectos que generan impacto.

El objetivo principal de esta guia, radica en impulsar el desarrollo del rubro eléctrico en sintonía con las necesidades económicas y de demanda de la región. Para ello, se ha llevado a cabo una investigación enfocada en el sector industrial y su entorno, con miras a garantizar el abasto eléctrico tanto a la industria como a la población en general, favoreciendo un crecimiento sostenible y competitivo para Baja California.

TO Y GENERALIDADES

Baja California, ubicado en la región noroeste de México, posee una posición geográfica estratégica que favorece la generación de energía a partir de diversas fuentes. Su territorio limita al norte con el estado de California, Estados Unidos; al este con Sonora y el Mar de Cortés; y al oeste con el océano Pacífico. Esta ubicación privilegiada no solo facilita el acceso a mercados internacionales, sino que también ofrece una gran diversidad de recursos naturales que han posicionado al estado como un referente clave en la región fronteriza

El clima predominante es árido y semiárido, lo que garantiza cielos despejados la mayor parte del año y niveles de radiación solar entre los más altos del país, especialmente en zonas como Mexicali y el Valle de San Felipe. Esto ha incentivado el desarrollo de proyectos fotovoltaicos en la región.

A su vez, la actividad geotérmica en el subsuelo del Valle de Mexicali permite el aprovechamiento del calor natural de la Tierra para generar energía limpia a través de la central geotérmica de Cerro Prieto, una de las más grandes de América Latina.

En la región montañosa de La Rumorosa, entre Tecate y Mexicali, los vientos constantes que atraviesan los cañones y formaciones rocosas han hecho factible la instalación de aerogeneradores, que validan un potencial aún mayor para desarrollos eólicos a gran escala.

Si bien, en su mayoría es para exportación hacia California y, particularmente, a Silicon Valley, también se cuenta con un proyecto eólico de 10MW que opera el Gobierno de Baja California para operar programas de impacto social en el estado.

Más allá del ámbito energético, Baja California también es una región de contrastes naturales. La Sierra de San Mártir Pedro alberga bosques coníferas y especies únicas como el cóndor de California. reintroducido exitosamente, mientras que sus litorales. tanto en el Pacífico como en el Mar de Cortés, son hábitat de ballenas, delfines, lobos marinos variedad una V impresionante de fauna marina.

Estos ecosistemas, combinados con su clima extremo y su baja densidad poblacional fuera de los grandes centros urbanos, presentan tanto retos como oportunidades para llevar electricidad a comunidades alejadas mediante tecnologías como las microrredes solares o los sistemas híbridos de generación.

Con ciudades densamente pobladas como Tijuana y Mexicali, pero también con amplias zonas rurales y desérticas, hace que la distribución de la energía sea tan importante como su generación.

En este sentido, Baja California no sólo tiene la capacidad de producir electricidad, sino que lo hace a partir de fuentes limpias, respondiendo a un modelo de sostenibilidad energética que aprovecha su propio entorno geográfico como fortaleza.

IMPORTANCIA DE LA ENERGÍA EN BAJA CALIFORNIA

El pilar económico más importante en Baja California, es la industria manufacturera, con más de 1,000 empresas de manufactura con programa IMMEX. Dedicadas a diversos ramos, entre ellos destacando los más importantes: electrónica, semiconductores, dispositivos médicos, aeroespacial, automotriz, entre otros.

Las principales ciudades industriales son: Tijuana, reconocida por su amplia base manufacturera en electrónica y dispositivos médicos; Mexicali, que sobresale por la industria aeroespacial y automotriz; y otros municipios como Tecate y Ensenada, que también suman empresas dedicadas a la misma industria y agroindustria.

En 2025, Baja California se posiciona como el estado líder en todo el país, concentrando el 17.6% de empresas registradas en el programa IMMEX.

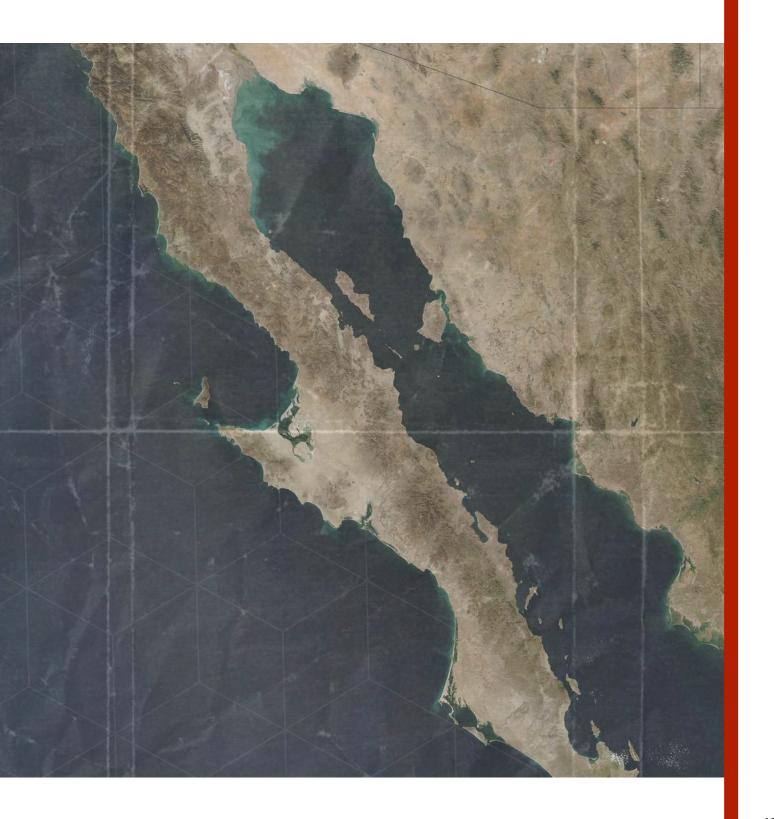
Además, Baja California se encuentra en la segunda posición en generación de empleo en la industria, después de Chihuahua, con 390,000 empleos directos y hasta 420,000 en temporada alta de exportación.

La atracción de inversión nacional y extranjera, el establecimiento de nuevas empresas, el desarrollo de viviendas y la creciente oferta de carreras universitarias dirigidas a la industria, hacen que el reto energético se vuelva cada vez mayor.

Se trata de una carrera a largo plazo, que, día a día exige un impulso más acelerado para satisfacer las necesidades presentes y futuras de la población y la industria en el estado.

- PARTICULARIDADES DE LA ENERGÍA EN BAJA CALIFORNIA

Para entender un poco cuál es la situación del estado con respecto a la energía, debemos comprender participación de las autoridades del Gobierno Mexicano. pues nivel constitucional, el sector energético es de competencia federal, apoyado Comisiones y Agencias Estatales de Energía, como; la Secretaría de Energía (SENER), la Comisión Nacional de Energía (CNE) y el Centro Nacional de Control de Energía (CENACE), son los encargados de administrar y operar el Sistema Eléctrico Nacional (SEN) a través de la Comisión Federal de Electricidad (CFE) y el Mercado Eléctrico Mayorista (MEM).


La CFE continúa siendo la empresa más

grande que suministra y distribuye energía eléctrica a nivel nacional.

Sin embargo, a partir de la reforma energética (2013-2014) se creó el MEM, en el cual generadores y grandes consumidores pueden celebrar contratos compraventa de energía participantes privados, lo que ha impulsado el desarrollo de la industria de manera medida, donde la CFE busca seguir siendo quien lleve el control con una participación en el mercado nacional del 54%.

Cabe mencionar que esta dinámica del 54-46 es a partir del reciente cambio regulatorio que busca impulsar la transición energética para impulsar la generación de energías limpias.

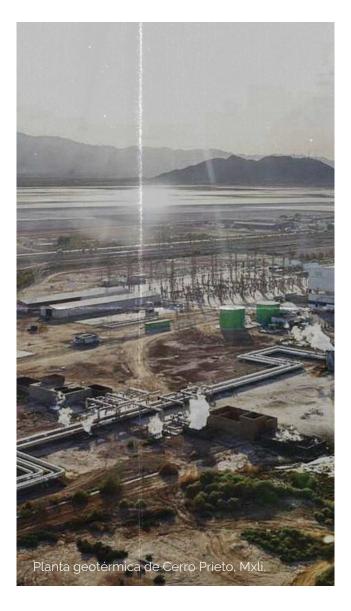
¿ESTAMOS CONECTADOS AL RESTO DEL PAÍS?

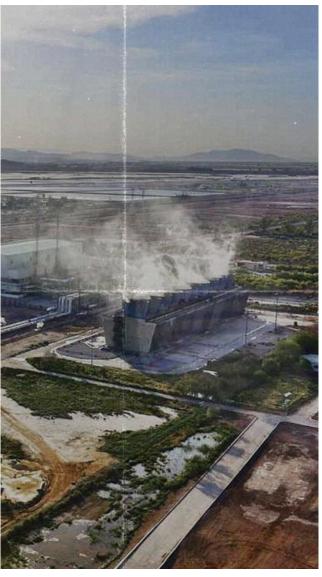
En cuestiones de infraestructura eléctrica, México cuenta con un Sistema Interconectado Nacional (SIN), el cual se integra por 7 regiones a lo largo del país, con la capacidad de compartir recursos eléctricos (enviar y recibir energía) ante demanda y cuestiones operativas. Los únicos estados que no cuentan o forman parte de este Sistema Interconectado Nacional, es Baja California y Baja California Sur.

Baja California cuenta con su propio sistema de energía, llamado "Red Eléctrica de Baja California", el cual opera independiente al resto al país. Es importante entender que Baja California si está conectado a esta red, sin embargo, no se encuentra interconectado.

¿Qué significa esto?

Que se recibe energía, más no se envía de Baja California al resto del país.


SISTEMA INTERCONECTADO NACIONAL

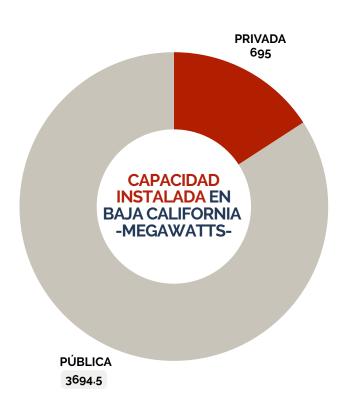



Esta situación, más que un problema para Baja California ha representado un reto técnico y estratégico que ha impulsado proyectos para garantizar el suministro energético a la industria local, y a la misma vez, el análisis para la generación de proyectos para interconectarse al resto del país.

Mientras tanto, el estado sigue avanzando en el desarrollo de sus centrales de generación. Así mismo, el fortalecimiento y modernización de redes de transmisión y distribución para llevar la energía a los centros de consumo.

En la actualidad, el estado cuenta con varias plantas generadoras, sin embargo, las instalaciones que proveen la mayor parte de la energía al estado, incluyen las centrales de generación de ciclo combinado de Playas de Rosarito y Mexicali, así como la planta geotérmica de Cerro Prieto (en Mexicali), una de las más grandes e importantes de la región.

CAPACIDAD INSTALADA ACTUAL Y FUENTES DE **GENERACIÓN** EN BAJA CALIFORNIA


Actualización Junio 2025*

La capacidad instalada total en el estado se encuentra en alrededor de 4,250± a 4,400 MW±*. Aparte de esa capacidad, el estado importa hasta 408 MW desde la red de California Western Electricity Coordinating Council (WECC), que permiten cubrir el pico de demanda durante el periodo de verano.

De acuerdo con el Plan Estatal de Energía 2022-2027 publicado en Octubre del 2023 por la Gobernadora Marina del Pilar Ávila Olmeda, se menciona la construcción de un proyecto fotovoltaico en Puerto Peñasco (Sonora) con una capacidad instalada de 1000MW como parte de un plan para conectar Baja California al Sistema Interconectado Nacional (SIN) a partir del 2024.

En la actualidad, se han concluido las primeras dos etapas dicha central fotovoltaica, de los cuales 300MW ya se inyectan a la Red Eléctrica de Baja California, con planes de expandir hasta 880 MW que corresponderían al estado.

Como se menciona también en el plan, se mantienen en agenda el potencial de la región en materia de almacenamiento de energía a partir de baterías de litio, así como el aprovechamiento de hidrógeno verde como parte de la transición energética hacia 2030.

Aunado a esto, se han agregado algunas declaraciones y acciones de la Presidenta Claudia Sheinbaum sobre la importancia del sector energético, menciona:

- 1) Dar continuidad a la transición energética: Como parte del Plan Nacional de Energía, el Gobierno de México ha asumido el compromiso de llegar a al menos el 40% de generación de energía a través de fuentes limpias a nivel nacional para 2030. Por su parte, Baia California, derivado de sus recursos naturales, su ubicación estratégica y su potencial eólico y solar, se considera una importante para reaión desarrollar modelos de generación renovable y almacenamiento de energía.
- 2) Impulsar la investigación e industria del litio: Bajo su gestión federal, se planea fortalecer el organismo Litio para México (LitioMx) y explorar el potencial de reservas geotérmicas y salmueras en el noroeste del país, incluidas zonas de Mexicali, Cierro Prieto, así como zonas colindantes con el Valle Imperial de California. Como también ha comentado dar apoyo para proyectos piloto de baterías de litio y microrredes en comunidades fronterizas.

3) Fomentar inversiones de nearshoring:

También ha conversado al respecto de un programa de estímulos fiscales para empresas que instalen sistemas de autoabastecimiento con energías renovables en Baja California y Sonora, aprovechando la cercanía con el mercado estadounidense.

Con expectativas de aumentar la cooperación transfronteriza en proyectos de electromovilidad y energías limpias, en conjunto con California (EE. UU.).

4) Fortalecer la infraestructura de transmisión y distribución: La Presidenta ha mencionado en foros federales la necesidad de acelerar las obras de transmisión y distribución en la región norte del país que permita atender el incremento de la demanda. particularmente por nuevas inversiones. así como la incorporación de nuevas centrales de generación renovable. De la mano con la SENER y CFE buscará revisar a detalle el avance del "Proyecto de Interconexión BC-SIN" y garantizar su culminación.

PROYECCIONES DEL CONTEXTO DE ENERGIA EN BAJA CALIFORNIA

Actualmente Baja California cuenta con centrales de generación en construcción que se sumarán a la capacidad instalada en los próximos años:

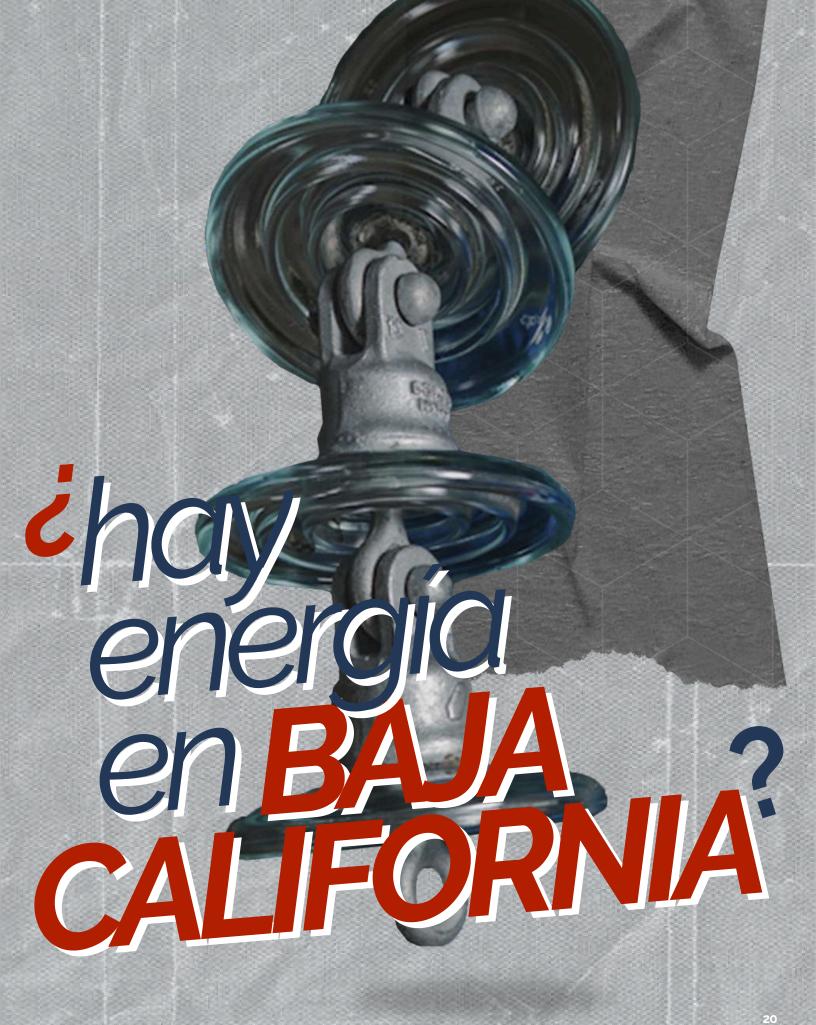
- •Central turbogás González Ortega: 184 MW, entró en operaciones en 2023.
- •Central de combustión interna Mexicali Oriente (Ejido Cuernavaca): 429 MW, entró en operaciones en 2023.
- •Central de combustión interna en Parque Industrial (San Luis Río Colorado) 196 MW, entró en operaciones en 2023.
- •Central de ciclo combinado González Ortega: 624 MW, proyectada para 2025, esperando comience a operar en 2026.

- •Central de ciclo combinado San Luis Río Colorado: 622 MW, proyectada para 2025, esperando comience a operar en 2026.
- •Proyecto fotovoltaico Puerto Peñasco: Etapas III y IV que sumarán 300 MW y 280 MW respectivamente, para un total de 880 MW para Baja California.

Estas obras buscan atender el rápido crecimiento del consumo eléctrico, especialmente durante el verano, cuando la demanda puede superar los 3,500 MW. Además, tienen como objetivo fortalecer el suministro para impulsar nuevas inversiones en desarrollos industriales e inmobiliarios.

PROYECTOS INDUSTRIALES SUBESTACIONES 2025

Gracias a la colaboración directa que se tiene con desarrolladores industriales se pudo acceder a la siguiente información:

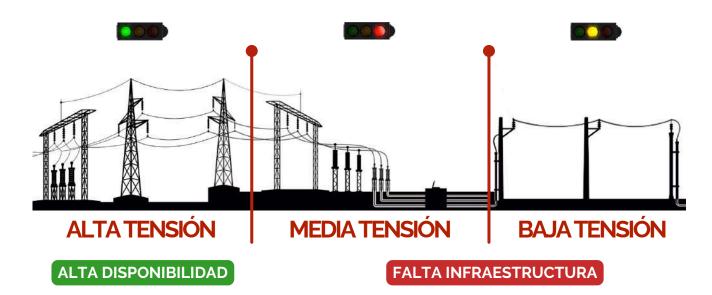

PARQUES INDUSTRIALES + SUBESTACIONES PÚBLICAS Y PRIVADAS

PROYECTOS • CAPACIDADES Y VOLTAJES

NOMBRE	CAPACIDAD INST	ALADA	VOLTAJE	ESTATUS	ENTREGA
LA ENCANTADA	15	MVA	69/115 KV	ENERGIZADA	
LOS OLIVOS	30	MVA	69/115 KV	ENERGIZADA	
PARQUE SUR	30	MVA	230 KV	ENERGIZADA	
PARQUE NORTE	15	MVA	230 KV	ENERGIZADA	
PI NOGALES	30	MVA	230 KV	ENERGIZADA	
VESTA PARK MEGA REGION	30	MVA	69/115 KV	ENERGIZADA	
NWIP	22	MVA	69/115 KV	EN CONSTRUCCIÓN	Q4 2025
PI MAKRO	90	MVA	230 KV	EN CONSTRUCCIÓN	Q4 2025
PI VIA	90	MVA	230 KV	EN CONSTRUCCIÓN	Q4 2025
PI MUSA/RUBA	60	MVA	230 KV	EN CONSTRUCCIÓN	Q4 2025
PI DORADO	15	MVA	69/115 KV	EN CONSTRUCCIÓN	Q4 2026
PI COYOTE	30	MVA	230 KV	EN CONSTRUCCIÓN	Q4 2026
NORTHLINK VALLE REDONDO	10	MVA	69/115 KV	EN CONSTRUCCIÓN	Q4 2025
QUANTUM	30	MVA	69/115 KV	EN CONSTRUCCIÓN	2026 - 2027
NORTHEAST IP / HUBS PARK	25	MVA	69/115 KV	EN CONSTRUCCIÓN	Q4 2026
LA HERRADURA IP	13	MVA	69/115 KV	EN CONSTRUCCIÓN	
ATISA 2000	15	MVA	230 KVA	EN CONSTRUCCIÓN	Q2 2027
CAPACIDAD DISPONIBLE	550	MVA´s			

Nota: Los proyectos, capacidades industriales y voltajes son una estimación más no un dato final.

Desde hace al menos 15 años, el crecimiento de la demanda energética, el desarrollo industrial y la expansión urbana han generado la necesidad constante de invertir en infraestructura para asegurar el suministro eléctrico en cada ciudad.


La respuesta a la pregunta incómoda respecto a la energía en Baja California es:

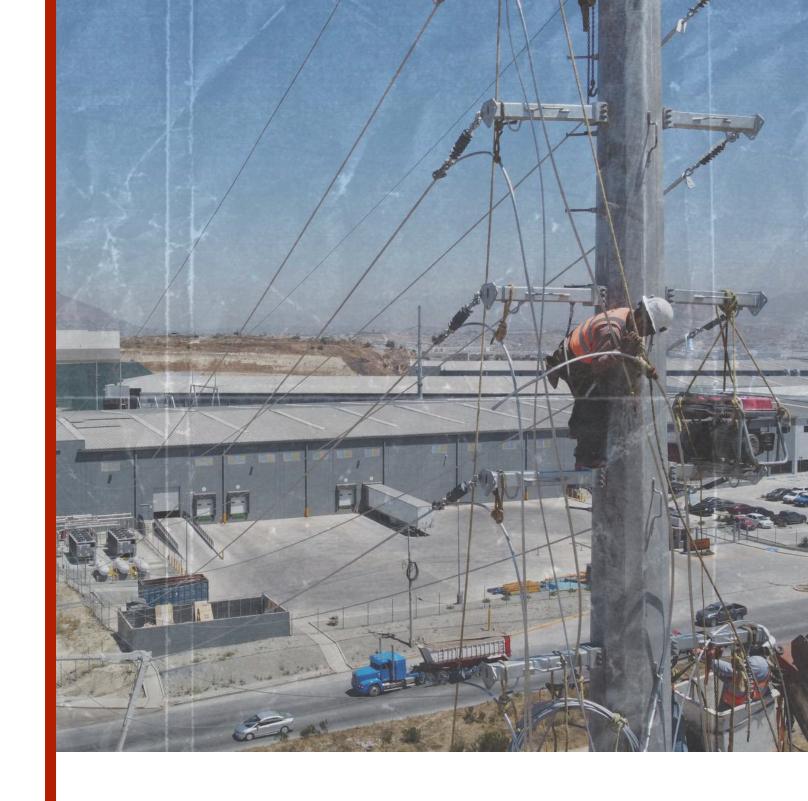
El estado dispone hoy de capacidad de generación a partir de sus centrales de ciclo combinado, la geotérmica Cerro Prieto, centrales fotovoltaicas, así como los nuevos proyectos que se están agregando a la red, como sus expansiones y la posibilidad de importar electricidad de California durante la temporada alta. Esa energía generada se mueve por líneas de alta tensión.

El verdadero reto no está en la generación de energía, sino en la infraestructura necesaria para llevarla a donde se necesita. La mayor parte de la energía disponible en Baja California se encuentra en líneas de alta tensión, pero la red de media y baja tensión no cuenta con la capacidad suficiente para abastecer de manera eficiente a industrias, comercios y viviendas.

Esta falta de subestaciones, transformadores y circuitos de distribución genera la percepción de que "no hay energía", sin embargo, el problema no es la disponibilidad de kilowatts o megawatts, sino que la necesidad radica en infraestructura para distribuir y transformarla.

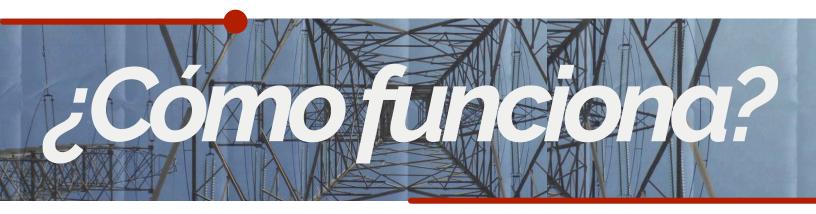
La CFE ya ejecuta obras para reforzar esos niveles, y el Programa Ampliación y Modernización de la RNT (Red Nacional de Transmisión) y la RGD (Red General de Distribución), prioriza subestaciones, microrredes y modernización de circuitos para todo el estado. Incluso contempla el potencial de las microrredes para atender zonas con pobreza energética donde no hay actualmente una infraestructura eléctrica. En resumen:

HAY ENERGÍA PARA USARSE, SOLO SE REQUIERE DE LA INFRAESTRUCTURA NECESARIA PARA ACCEDER A ELLA


Ahora, bien, ¿a qué se hace referencia cuando se habla de energía en alta tensión? Según la especificación de CFE L0000-02, las tensiones se clasifican de la siguiente manera:

NIVEL DE TENSIÓN	DESCRIPCIÓN		
BAJA TENSIÓN	TENSIONES NO MAYORES DE 1,000v		
MEDIA TENSIÓN	TENSIONES MAYORES DE 1,000v Y HASTA 35,000v		
ALTA TENSIÓN	TENSIONES MAYORES DE 35,000v Y HASTA 230,000v		
EXTRA ALTA TENSIÓN	TENSIONES SUPERIORES A 230,000v		

Entendiendo esto, es importante destacar que la inversión necesaria para la infraestructura mencionada anteriormente, es muy alta; mismos que entre gobierno federal y CFE deben administrar y planear la ejecución de este tipo de proyectos de infraestructura para cada región y estado, por lo cual, toma más tiempo del que se contempla para la necesidad actual.


Entonces, ¿qué tipo de infraestructura se requiere?

- Líneas de transmisión para transportar la energía a largas distancias.
- Subestaciones de maniobras o "Switcheo".
- Subestaciones de potencia (de alta a media tensión).
- Líneas de distribución.
- Subestaciones de media a baja tensión.
- Equipos de protección.

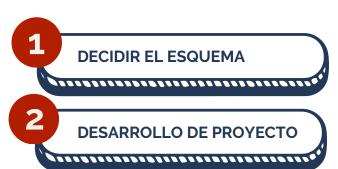
• ALTERNATIVAS PARA ENERGIA PRIVADA

Aquí es donde la iniciativa privada puede agilizar el proceso, para la obtención de energía, aportando por su propia cuenta la infraestructura necesaria.

Tomando en cuenta que el sistema de transmisión en alta tensión cuenta con suficiente energía para el Estado, en resumidas cuentas lo que se requiere es tomar esa alta tensión, transformarla a media y posteriormente a baja tensión para su uso. Existen dos tipos de esquemas para la administración de esta "energía particular", los cuales son:

DE MANERA PRIVADA

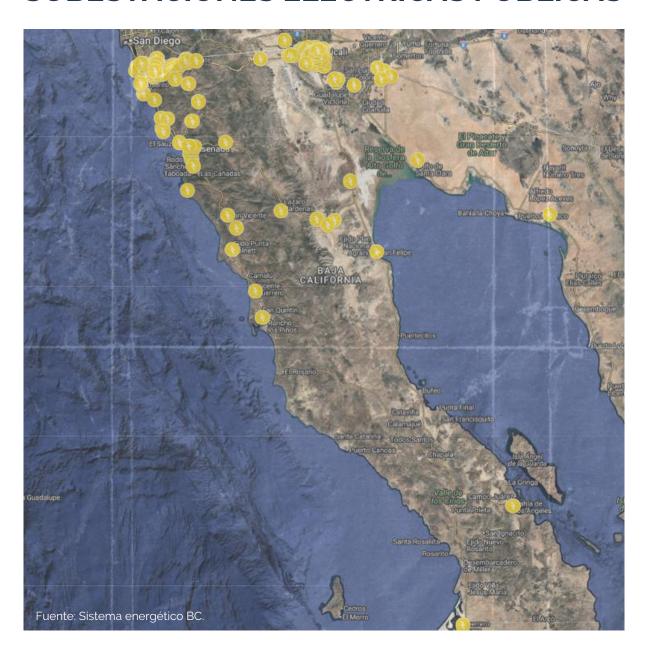
La empresa administra tanto la infraestructura como la energía, además, se encarga de realizar los servicios de mantenimiento necesarios, y el cobro de la misma a sus inquilinos.

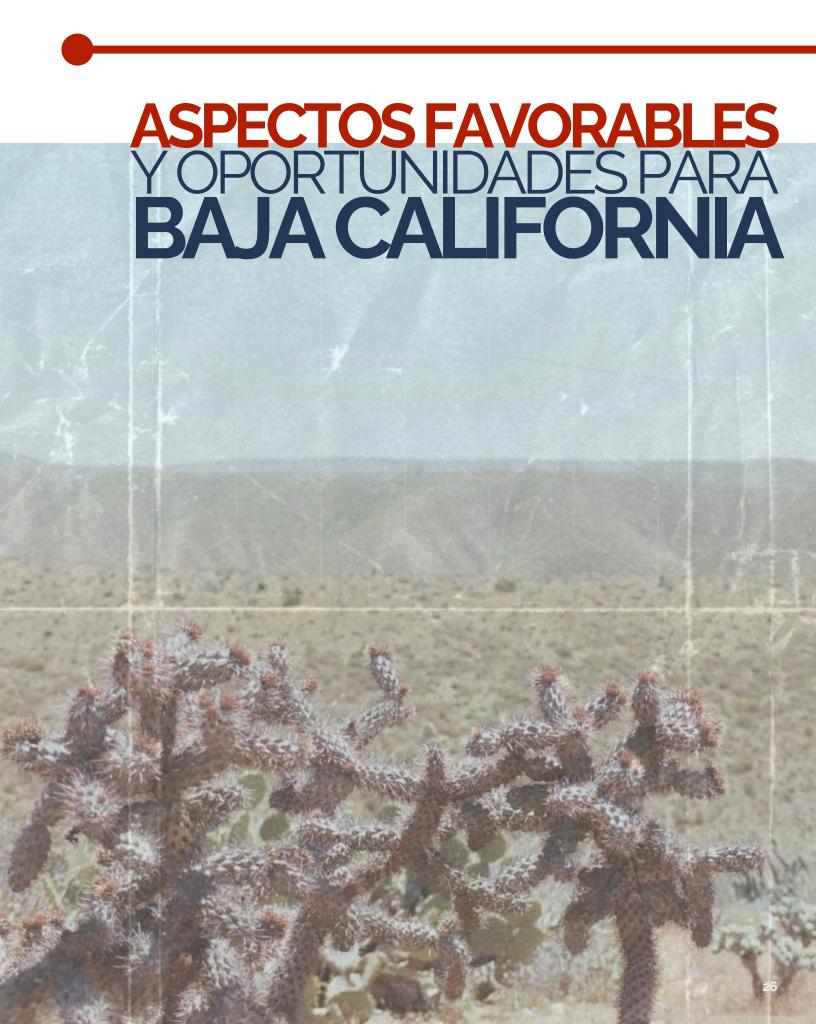

CEDER LOS DERECHOS

de la infraestructura a CFE para que ellos se encarguen de la administración y cobro de la energía, como normalmente se realiza.

Esta inversión se puede realizar tanto de manera individual como empresa, o entre varias entidades privadas, o grupos empresariales, de manera que entre estos mismos puedan solventar el gasto que representa contar con su propia infraestructura y energía.

ETAPAS DEL PROCESO





Es importante tomar en cuenta las posibles necesidades de infraestructura para un proyecto de esta naturaleza, las cuales podrían ser:

- Extensión de líneas de transmisión (necesarias para transmitir energía en alta tensión a un punto cercano a donde se requiere energía, en el caso que aplique).
- Ampliación de bahías en subestaciones existentes.
- Construcción de subestaciones de maniobras o switcheo.
- Recalibrado de líneas de transmisión existentes.
- Ampliación de caseta de control y telecomunicaciones.

SUBESTACIONES ELÉCTRICAS PÚBLICAS

Adicional a todo lo anterior, existe una visión favorable para la energía de Baja California.

1) Recursos naturales abundantes para inversión en proyectos de generación a partir de energías renovables:

- Niveles altos de radiación solar (especialmente en la zona de Mexicali).
- Potencial eólico en la Rumorosa y otras áreas.
- Potencial geotérmico a partir del vapor en el subsuelo.
- Presencia de la central geotérmica Cerro Prieto, que en su momento llegó a aportar hasta 99% de la energía limpia del estado.

2) Proyectos de gran escala en puerta:

- La interconexión con el resto del país y la expansión de la infraestructura de generación (incluyendo el parque solar en Puerto Peñasco) ofrecen oportunidades de suministro confiable y mejores precios a futuro.
- Planes de ampliación de la red de gas natural, impulsados por convenios entre CFE, Carso y Sempra Infraestructura.

Posibilidad de nearshoring y atracción de inversiones:

- La cercanía con el mercado de Estados Unidos y el incremento de capacidad de generación brindan ventajas competitivas.
- Sectores industrial y manufacturero podrían beneficiarse al firmar contratos de suministro eléctrico a precios más estables.

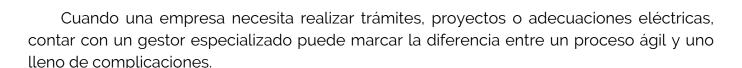
4) Fomento a la innovación y nuevas tecnologías:

 El Plan Estatal de Energía 2022-2027 del Gobierno del Estado de Baja California promueve estudios y planes sobre almacenamiento de energía (baterías de litio, hidrógeno verde), electromovilidad y eficiencia energética.

RECOMENDACIONES

PARA ASEGURARSE DE CONTAR CON LA ENERGIA NECESARIA.

¿CÓMO SABER SI LA PROPIEDAD QUE ADQUIRÍ, O QUE BUSCO COMPRAR TIENE ENERGÍA?


Existe la creencia de que contar con una "factibilidad" garantiza el suministro y/o conexión a la red eléctrica, lo cual es falso y propicia la desinformación.

Actualmente, mas allá de contar con una "factibilidad positiva", se debe iniciar una solicitud formal ante CFE, la cual debe estar correctamente integrada y iustificada para que después. autoridad regulatoria pueda realizar el estudio y análisis de los distintos factores y cargas disponibles para su conexión, lo que puede derivar en la solicitud de CFE para el desarrollo de infraestructura que garantice el buen funcionamiento de la red y confiabilidad de la misma a la hora de entregar la carga solicitada.

CONSIDERACIONES - al contratar a un GESTOR EN ENERGÍA

CONSIDERACIONES AL CONTRATAR A UN GESTOR EN ENERGÍA

Antes de elegir a quién confiarle esta tarea, considera los siguientes puntos:

EXPERIENCIA COMPROBABLE EN EL SECTOR

Asegúrate de que la empresa tenga trayectoria en proyectos eléctricos industriales, comerciales y/o residenciales.

La experiencia permite anticipar problemas técnicos, administrativos y normativos que podrían retrasar un proyecto.

CONOCIMIENTO DE LA NORMATIVA VIGENTE

El gestor debe estar familiarizado con el Código de Red, los lineamientos de la CFE, CENACE y la SENER, así como con los procedimientos aplicables para aumentos de carga, interconexiones o regularización de instalaciones.

TRATO DIRECTO CON LAS AUTORIDADES

Un buen gestor tiene comunicación constante con las instituciones correspondientes.
Esto agiliza los trámites y reduce tiempos de espera, evitando errores en la documentación o duplicidad de gestiones.

CAPACIDAD TÉCNICA Y EQUIPO ESPECIALIZADO

No solo se trata de hacer papeleo: muchos proyectos requieren levantamientos, estudios eléctricos, mediciones o adecuaciones físicas.

Busca que el gestor cuente con personal técnico calificado y equipos certificados.

COBERTURA INTEGRAL DEL SERVICIO

Lo ideal es que el proveedor pueda encargarse de todo el proceso, desde la planeación del proyecto y la tramitología, hasta la ejecución de obra y la entrega final. Esto evita la fragmentación de responsabilidades y facilita el seguimiento de garantías.

TRANSPARENCIA Y COMUNICACION

Pide siempre que te

expliquen los pasos, tiempos y costos de cada fase.
Un gestor profesional mantiene una comunicación clara y reportes actualizados sobre el avance del proyecto.

REPUTACIÓN Y REFERENCIAS

Consulta referencias o casos de éxito de otras empresas. La reputación técnica y el cumplimiento son indicadores de confiabilidad.

CONOCE MÁS DE NEZCO

www.nezco.mx www.nezco.us

+52 (664) 380 9530 +1 (619) 897 1680

contacto@nezco.mx info@nezco.us

in (f) (i) nezcomx

Gobierno del Estado de Baja California. (s. f.). Secretaría de Hacienda. Recuperado de https://www.bajacalifornia.gob.mx/hacienda

Gobierno del Estado de Baja California. (s. f.). Comisión Estatal de Energía (CEEBC). Recuperado de https://www.bajacalifornia.gob.mx/energia

Centro Nacional de Control de Energía (CENACE). (2024). Reportes trimestrales de demanda y capacidad instalada. Actas de Protocolo Correctivo para Baja California. CENACE. https://www.cenace.gob.mx

Secretaría de Energía (SENER). (2024). Programa de Desarrollo del Sistema Eléctrico Nacional (PRODESEN) 2024–2038. Gobierno de México. https://www.gob.mx/sener

La Voz de la Frontera. (s. f.). Noticias sobre energía y desarrollo en Baja California. Recuperado de https://www.lavozdelafrontera.com.mx

El Mexicano. (s. f.). Noticias sobre energía en Baja California. Recuperado de https://www.el-mexicano.com.mx

El Imparcial. (s. f.). Cobertura de proyectos energéticos en Baja California. Recuperado de https://www.elimparcial.com

Milenio. (s. f.). Noticias nacionales de energía y economía. Recuperado de https://www.milenio.com

El Universal. (s. f.). Energía y economía en México. Recuperado de https://www.eluniversal.com.mx

Instituto de Investigaciones Eléctricas. (s. f.). Estudios y publicaciones en energía. Recuperado de https://www.iie.org.mx

Universidad Autónoma de Baja California (UABC). (s. f.). Investigación y foros energéticos. Recuperado de https://www.uabc.mx

Cetys Universidad. (s. f.). Foros y publicaciones sobre energía. Recuperado de https://www.cetys.mx

INCOMEX. (s. f.). Asociación de la Industria Maquiladora y de Exportación. Recuperado de https://www.incomex.org

El Imparcial. (2025, 23 de abril). Lidera estado en empresas IMMEX del país. El Imparcial. https://www.elimparcial.com/tij/tijuana/2025/04/23/lidera-estado-en-empresas-immex-del-pais/